ON EIGENVALUE ESTIMATES FOR THE SUBMANIFOLD DIRAC OPERATOR

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Eigenvalue Estimates for the Submanifold Dirac Operator

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.

متن کامل

Extrinsic Eigenvalue Estimates of the Dirac Operator

For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the Dirac operators, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues.

متن کامل

Submanifold Dirac Operator with Torsion

The submanifold Dirac operator has been studied for this decade, which is closely related to Frenet-Serret and generalized Weierstrass relations. In this article, we will give a submanifold Dirac operator defined over a surface immersed in E with U(1)-gauge field as torsion in the sense of the Frenet-Serret relation, which also has data of immersion of the surface in E. MSC2000: 34L40, 53A05, 5...

متن کامل

Dirac eigenvalue estimates on surfaces

We prove lower Dirac eigenvalue bounds for closed surfaces with a spin structure whose Arf invariant equals 1. Besides the area only one geometric quantity enters in these estimates, the spin-cut-diameter δ(M) which depends on the choice of spin structure. It can be expressed in terms of various distances on the surfaces or, alternatively, by stable norms of certain cohomology classes. In case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2002

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x0200140x